
This is a gentle and timeless journey through the

tenets of TypeScript. If you’re a JavaScript programmer

looking for a clear primer text to help you become

immediately productive with TypeScript, this is the

book you’re looking for. It’s filled with practical

examples and clear technical explanations.”

—Natalie MarlenyNatalie Marleny, Application Engineer

Stefan walks you through everything from basic types

to advanced concepts like the infer keyword in a clear

and easy to understand way. The book is packed with

many real-world examples and great tips, transforming

you into a TypeScript expert by the end of it.

Highly recommended read!”

—Marvin HagemeisterMarvin Hagemeister, Creator of Preact-Devtools

Stefan Baumgartner is a software architect

based in Austria. He has published online

since the late 1990s, writing for Manning,

Smashing Magazine, and A List Apart.

He organizes ScriptConf, TSConf:EU, and

DevOne in Linz, and co-hosts the German-

language Working Draft podcast.

9 783945 749906

“

“

Published 2020 by Smashing Media AG, Freiburg, Germany.
All rights reserved.
ISBN: 978-3-945749-90-6

Cover and interior illustrations: Rob Draper
Copyediting: Owen Gregory
Cover and interior layout: Ari Stiles
Ebook production: Cosima Mielke
Typefaces: Elena by Nicole Dotin, Mija by

Miguel Hernández and Andalé Mono by Steve Matteson

TypeScript in 50 Lessons was written by Stefan Baumgartner and
reviewed by Shawn Wang.

This book is printed with material from
FSC® certified forests, recycled
material and other controlled sources.

Please send errors to: errata@smashingmagazine.com

To Doris, Clemens, and Aaron

	 Table of Contents

	 Introduction . xi

1 	 TypeScript for Smashing People 19

2 	 Working with Types 67

3	 Typing Functions 131

4	 Union and Intersection Types 201

5	 Generics 267

6	 Conditional Types 329

7	 Thinking in Types 383

Lesson 22: Modeling Data 204

Lesson 23: Moving in the Type Space 212

Lesson 24: Working With Value Types 221

Lesson 25: Dynamic Unions 232

Lesson 26: Object Types and

	 Type Predicates . 239

Lesson 27: Down at the Bottom: never . . . 246

Lesson 28: Undefined and Null 253

Union and Intersection Types

We’ve come quite far with TypeScript. We’ve
learned about the tooling aspect, type infer-
ence, and control flow analysis, and we know

how to type objects and functions effectively. With what we
have learned, we are able to write pretty complex applica-
tions and most likely will get good enough tooling out of it
to get us through our day.

But JavaScript is special. The flexibility of JavaScript that
allows for easy to use programming interfaces is, frankly,
hard to sum up in regular types. This is why TypeScript
offers a lot more.

Starting with this chapter, we’ll go deep into TypeScript’s type
system. We will learn about the set theory behind TypeScript,
and how thinking in unions and intersections will help us get
even more comprehensible and clearer type support. This is
where TypeScript’s type system really shines and starts becom-
ing much more powerful than what we know from traditional
programming languages. It’s going to be an exciting ride!

To illustrate the concepts of union and intersection types,
we’ll work on a page for tech events: meetups, conferences,
and webinars; events that are similar in nature, but distinct
enough to be treated differently.

Lesson 22: Modeling Data

Imagine a website that lists different tech events:

1.	 Tech conferences: people meet at a certain location
and listen to a couple of talks. Conferences usually cost
something, so they have a price.

2.	Meetups: smaller in scale, meetups are similar to
conferences from a data perspective. They also happen
at a certain location with a range of talks, but compared
with tech conferences they are usually free. Well, at
least in our example they are.

3.	 Webinars: instead of people attending in a physical
space, webinars are online. They don’t need a location,
but a URL where people can watch the webinar in their
browser. They can have a price, but can also be free.
Compared with the other two event types, webinars
feature only one talk.

All tech events have common properties, like a date, a descrip-
tion, a maximum number of attendees, and an RSVP count.
We also have a string identifier in the property kind, where we
can distinguish between conferences, webinars, and meetups.

In our app, we’re working with that kind of data a lot. We
grab a list of tech events as JSON from a back end, and also

204 TypeScript in 50 Lessons

when we add new events to a list, or want to retrieve their
properties to display them in a UI.

To make life easier – and much less prone to errors – we
want to spend some time modeling this data as TypeScript
types. With that, we not only get proper tooling but also red
squiggly lines should we forget something.

Let’s start with the easy part. Every kind of tech event has some
sort of talk, maybe several. A talk has a title, an abstract, and
a speaker. We keep the speaker simple for now and represent
them with a simple string. The type for a talk looks like this:

type Talk = {
 title: string,
 abstract: string,
 speaker: string
}

With that in place, we can develop a type for conferences:

type Conference = {
 title: string,
 description: string
 date: Date,
 capacity: number,
 rsvp: number,
 kind: string,

205Chapter 4 Union and Intersection Types

 location: string,
 price: number,
 talks: Talk[]
}

… a type for meetups, where price is a string (“free”) instead
of a number:

type Meetup = {
 title: string,
 description: string
 date: Date,
 capacity: number,
 rsvp: number,
 kind: string,
 location: string,
 price: string,
 talks: Talk[]
}

… and a type for webinars, where we only have one talk, and
we don’t have a physical location but a URL to host the event:

type Webinar = {
 title: string,
 description: string
 date: Date,

206 TypeScript in 50 Lessons

 capacity: number,
 rsvp: number,
 kind: string,
 url: string,
 price?: number,
 talks: Talk
}

Also, you see that types are optional. With those four types
in place, we already modeled a good part of the possible
data we can get from the back end. And some parts have a
common shape within all three event types, and other parts
are subtly, or entirely, different.

Intersection Types

The first thing we realize is that there are lots of similar
properties; properties that also should stay the same, the
basic shape of a TechEvent. With TypeScript, we’re able to
extract that shape and combine it with properties specific to
our concrete single types.

First, let’s create a TechEventBase type that contains all the
properties that are the same in all three event types.

type TechEventBase = {

207Chapter 4 Union and Intersection Types

 title: string,
 description: string
 date: Date,
 capacity: number,
 rsvp: number,
 kind: string
}

Then, let’s refactor the original three types to combine
TechEventBase with the specific properties of each type.

type Conference = TechEventBase & {
 location: string,
 price: number,
 talks: Talk[]
}

type Meetup = TechEventBase & {
 location: string,
 price: string,
 talks: Talk[]
}

type Webinar = TechEventBase & {
 url: string,
 price?: number,
 talks: Talk
}

208 TypeScript in 50 Lessons

We call this concept intersection types. We read the & operator
as and. We combine the properties from one type A with that
of another type B, much like extending classes. The result is a
new type with the properties of type A and type B.

The immediate benefit we get is that we can model com-
mon properties in one place, which makes updates and
changes a lot easier.

Furthermore, the actual difference between types
becomes a lot clearer and easier to read. Each subtype has
just a couple of properties we need to take care of, instead
of the full list.

Union Types

But what happens if we get a list of tech events, where each
entry can be either a webinar, or a conference, or a meetup?
Where we don’t know exactly what entries we get, only that
they are of one of the three event types.

For situations like that, we can use a concept called union
types. With union types we can model exactly the following
scenario: defining a TechEvent type that can be either a
Webinar, or a Conference, or a Meetup. Or, in code:

209Chapter 4 Union and Intersection Types

type TechEvent = Webinar | Conference | Meetup;

We read the pipe operator | as or. What we get is a new
type, a type that tries to encompass all possible properties
available from the types we set in union.

The new type can access the following properties:

•	 title, description, date, capacity, rsvp, kind – the
properties all three types have in common with their
original primitive type. This is what the shape of
TechEventBase gives us.

•	 talks. This property can be either a single Talk, or an
array Talk[]. Its new type is Talk | Talk[].

•	 price. The price property is also available in all three
original object types, but its own type is different.
price can be either string or number, and – following
Webinar – it can be optional. To safely work with price,
we have to do some checks within our code: we have
to check if it’s available, and then we have to do typeof
checks to see if we’re dealing with a number
or a string.

Working with price and talks might look something like this:

210 TypeScript in 50 Lessons

function printEvent(event: TechEvent) {
 if(event.price) {
 // Price exists!
 if(typeof event.price === 'number') {
 // We know that price is a number
 console.log('Price in EUR: ', event.price)
 } else {
 // We know that price is a string, so the
 // event is free!
 console.log('It is free!')
 }
 }
 if(Array.isArray(event.talks)) {
 // talks is an array
 event.talks.forEach(talk => {
 console.log(talk.title)
 })
 } else {
 // It's just a single talk
 console.log(event.talks.title)
 }

}

Does this structure remind you of something? Back in
chapter 2 we learned about the concept of control flow, and
narrowing down types with type guards. This is exactly
what’s happening here. Since the type can take on different
shapes, we can use type guards (if statements) to narrow
down the union type to its single type.

211Chapter 4 Union and Intersection Types

Please note that we are moving between the union types
of the respective properties price and talks. All other
information of the original types Webinar, Conference,
and Meetup that can’t be unified (like location and URL) are
dropped from the shape of the union. We need some more
information to narrow down to the original object shapes.

Lesson 23:
Moving in the Type Space

Before we continue, let’s quickly review what we’ve just
learned. We learned about intersection types, the way to
combine two or more types into one, much like extending
from an object type.

And we learned about union types, a way to extract the lowest
common denominator of a set of types. But why do we call
them intersection and union types?

Set Theory

To find out, we need to review what types actually are. In
his book Programming with Types, Vlad Riscutia defines a
type as follows:24

24	 https://smashed.by/typingintro

212 TypeScript in 50 Lessons

A type is a classification of data that defines the
operations that can be done on that data, the
meaning of the data, and the set
of allowed values.

The part we want to focus on is the “set of allowed values.”
This is something we already experienced when working
with types. Once a variable has a certain type annotation,
TypeScript only allows a specific set of values to be assigned.

Type string only allows for strings to be assigned; number
only allows for numbers to be assigned. Each type deals
with a distinct set of values. When we think further, we
can put those sets in a hierarchy. The types any and
unknown encompass the whole set of all available values.
They are known as top types as they are on the very top
of the hierarchy.

top types

unknown

number
symbol

object

string

boolean

any

Top types, including all other types.

213Chapter 4 Union and Intersection Types

Primitive types such as boolean, number or string are one
level below any and unknown. They cluster the set of all avail-
able values into distinct sets of specific values: all Boolean
values, all numbers, all strings.

primitive and
complex types

Symbol

Object

-1

...

NaN

1000000

120.3
6

'Hello world'

string

...

'Smashing'

number

true

boolean

false

Primitive and complex type sets.

Those sets are distinct. They don’t share any common values.
If we now build a union type string | number, we allow
for all values that are either from the set string or the set
number, which means we get a union set of possible values.

214 TypeScript in 50 Lessons

union
types

'Hello world'

-1

...

NaN

1000000

120.3
6

number

string

...

'Smashing'

A union of numbers and string.

If we were to build an intersection type string & number,
we’d have an empty intersection set as they don’t share
any common values.

This is also where the term narrowing down comes from.
We want to have a narrower set of values. If our type is
any, we can do a typeof check to narrow down to a specific
set in the type space. We move from a top type down to a
narrower set of values.

Object Sets

With primitive types it’s straightforward, but it gets a lot
more fun if we consider object types. Take these two
types, for example:

215Chapter 4 Union and Intersection Types

type Name = {
 name: string
}
type Age = {
 age: number
}

Since we have a structural type system, an object like

const person = {
 name: 'Stefan Baumgartner',
 city: 'Linz'
}

is a valid value of type Person. This object

// In my midlife crisis, I don't use semicolons
// ... just like the cool kids
const midlifeCrisis = {
 age: 38,
 usesSemicolons: false
}

is a valid value of type Age. This object

const me = {
 name: 'Stefan Baumgartner',

216 TypeScript in 50 Lessons

 age: 38
}

is compatible with both Age and Name.

However, we can’t assign every value of type Age to a type
Name because the sets are distinct enough to not have any
common values. Once we define the union type Age |
Name, both midlifeCrisis and person are compatible with
the newly created type.

The set gets wider, the number of compatible values gets
bigger. But we also lose clarity.

Conversely, an intersection type Person = Age & Name
combines both sets. Now we need all properties from type
Age and type Name.

intersection
types

{ name: string } { age: number }

all objects that

have a property

{ name: string }

all objects that

have a property

{ age: number }

all objects

that have

{ name: string,

age: number }

An intersection of Name and Age.

217Chapter 4 Union and Intersection Types

With that, only the variable me becomes compatible with the
newly generated type. The intersection is a subset of both
Age and Name sets – smaller, narrower, and we have to be
more explicit about our values.

Formally speaking, all values from type A
are compatible with type A | B, and all
values from type A & B are compatible
with type B.

Value Types

Let’s take this concept of narrowing and widening sets even
further. We now know that we can have all available values
and narrow them down to their primitive types. We can
narrow down the complex types, like the set of all available
objects, to smaller sets of possible objects defined on their
property keys. Can we get even smaller?

We can! We can narrow down primitive types to values. It
turns out that each specific value of a set is its own type:
a value type.

218 TypeScript in 50 Lessons

value
types

'Hello world'

'Smashing'

...

true

false

...

NaN
-1

6

120.3

1000000

And finally, value types.

Let’s look at the string 'conference' for example.

let conf = 'conference'

Our variable conf is compatible with a couple of types:

let withTypeAny: any = 'conference' // OK!
let withTypeString: string = 'conference' // OK!

// But also:

let withValueType: 'conference' = 'conference'
// OK!

219Chapter 4 Union and Intersection Types

You see that the set gets narrower and narrower. Type
any selects all possible values, type string all possible
strings. But type 'conference' selects the specific string
'conference'. No other strings are compatible.

TypeScript is aware of value types when assigning
primitive values:

// Type is string, because the value can change
let conference = 'conference'

// Type is 'conference', because the value can't
// change anymore.
const conf = 'conference'

Now that we’ve narrowed down the set to value types, we
can create wider custom sets again.

Let’s get back to our tech events example. We have three differ-
ent types of tech event: conferences, webinars, and meetups.

When our back end sends along details of which kind of
events we are dealing with, we can create a custom union type:

type EventKind =
 'webinar' | 'conference' | 'meetup'

220 TypeScript in 50 Lessons

With that, we can be sure we don’t assign any values that
aren’t intended, and we rule out typos, and other mistakes.

// Cool, but not possible
let tomorrowsEvent: EventKind = 'concert'

The value sets of primitive types are technically infinite. We
would never be reasonably able to express the full spectrum
of string or number in a custom type. But we can take very
specific slices out of it when it conforms to our data.

When we are deep in TypeScript’s type
system, we do a lot of set widening and
narrowing. Moving around in sets of
possible values is key to define clear yet
flexible types that give us first-class tooling.

Lesson 24:
Working with Value Types

Let’s incorporate our new knowledge about value and union
types to our tech event data structure. In lesson 22 (at the

221Chapter 4 Union and Intersection Types

start of this chapter) we figured out a TechEventBase type
that includes all common properties of each tech event:

type TechEventBase = {
 title: string,
 description: string
 date: Date,
 capacity: number,
 rsvp: number,
 kind: string
}

The last property of this type is called kind and it holds
information on the kind of tech event we are dealing with.
The type of kind is string at the moment, but we know that
this type can only take three distinct values:

type TechEventBase = {
 title: string,
 description: string
 date: Date,
 capacity: number,
 rsvp: number,
 kind: 'conference' | 'meetup' | 'webinar'
}

222 TypeScript in 50 Lessons

That’s already much better than the previous version. We
are more secure against wrong values and typos. This has
an immediate effect on what we can do with the combined
union type TechEvent. Let’s look at another function called
getEventTeaser:

function getEventTeaser(event: TechEvent) {
 switch(event.kind) {
 case 'conference':
 return `${event.title} (Conference)`
 case 'meetup':
 return `${event.title} (Meetup)`
 case 'webinar':
 return `${event.title} (Webinar)`
 // Again: cool, but not possible
 case 'concert':
 }
}

TypeScript immediately reports an error, because the
type 'concert' is not comparable to type 'conference' |
'meetup' | ‘webinar'. Unions of value types are brilliant for
control flow analysis. We don’t run into situations that can’t
happen, because our types don’t support such situations. All
possible values of the set are taken care of.

223Chapter 4 Union and Intersection Types

Discriminated Union Types

But we can do more. Instead of putting a union of three val-
ue types at TechEventBase, we can move very distinct value
types down to the three specific tech event types. First, we
drop kind from TechEventBase:

type TechEventBase = {
 title: string,
 description: string
 date: Date,
 capacity: number,
 rsvp: number,
}

Then we add distinct value types to each specific tech event.

type Conference = TechEventBase & {
 location: string,
 price: number,
 talks: Talk[],
 kind: 'conference'
}

type Meetup = TechEventBase & {
 location: string,
 price: string,
 talks: Talk[],
 kind: 'meetup'

224 TypeScript in 50 Lessons

}

type Webinar = TechEventBase & {
 url: string,
 price?: number,
 talks: Talk,
 kind: 'webinar'
}

At first glance, everything stays the same. If you hover over
the event.kind property in our switch statement, you’ll
see that the type for kind is still "conference" | "meetup" |
"webinar". Since all three tech event types are combined in
one union type, TypeScript creates a proper union type for
this property, just as we would expect.

But underneath, something wonderful happens. Where
before TypeScript just knew that some properties of the big
TechEvent union type existed or didn’t exist, with a specific
value type for a property we can directly point to the sur-
rounding object type.

Let’s see what this means for the getEventTeaser function:

function getEventTeaser(event: TechEvent) {
 switch(event.kind) {
 case 'conference':

225Chapter 4 Union and Intersection Types

 // We now know that I'm in type Conference
 return `${event.title} (Conference), ` +
 // Suddenly I don't have to check for price as
 // TypeScript knows it will be there
 `priced at ${event.price} USD`
 case 'meetup':
 // We now know that we're in type Meetup
 return `${event.title} (Meetup), ` +
 // Suddenly we can say for sure that this
 // event will have a location, because the
 // type tells us
 `hosted at ${event.location}`
 case 'webinar':
 // We now know that we're in type Webinar
 return '${event.title} (Webinar), ' +
 // Suddenly we can say for sure that there will
 // be a URL
 `available online at ${event.url}`
 default:
 throw new Error('Not sure what to do with
that!')
 }
}

Using value types for properties works like a hook for Type-
Script to find the exact shape inside a union. Types like this
are called discriminated union types, and they’re a safe way to
move around in TypeScript’s type space.

226 TypeScript in 50 Lessons

Fixating Value Types

Discriminating unions are a wonderful tool when you want
to steer your control flow in the right direction. But it comes
with some gotchas when you rely heavily on type inference
(which you should).

Let’s define a conference object outside of what we get from
the back end.

const script19 = {
 title: 'ScriptConf',
 date: new Date('2019-10-25'),
 capacity: 300,
 rsvp: 289,
 description: 'The feel-good JS conference',
 kind: 'conference',
 price: 129,
 location: 'Central Linz',
 talks: [{
 speaker: 'Vitaly Friedman',
 title: 'Designing with Privacy in mind',
 abstract: '...'
 }]
};

By our type signature, this would be a perfectly fine value of
the type TechEvent (or Conference). However, once we pass

227Chapter 4 Union and Intersection Types

this value to the function getEventTeaser, TypeScript will
hit us with red squiggly lines.

getEventTeaser(script19)

According to TypeScript, the types of script19 and
TechEvent are incompatible. The problem lies in type infer-
ence. The moment we assign this value to the script19 vari-
able, TypeScript tries to guess the correct type of each property
value, and aims for the set it can be most sure will work. As
with const objects, all properties are still variable, and inferred
types are mostly strings and numbers for simple properties.

This means the property kind in script19 will not be inferred
as 'conference' but as string. And string is a much wider
set of values than 'conference'. For this to work, we need to
tell TypeScript again that we are looking for the value type,
not for its superset of types. We have a couple of possibilities
to do that.

First, let’s do a left-hand side type annotation.

const script19: TechEvent = {
 // All the properties from before ...
}

228 TypeScript in 50 Lessons

With that, TypeScript does a type check right at the assign-
ment. This way, the value 'conference' for kind will be
seen as the annotated value type instead of the much wider
string.

Not only that, but TypeScript will also understand which
subtype of the discriminated type union we are dealing
with. If you hover over script19, you’ll see that TypeScript
will correctly understand this value as Conference.

Declared as TechEvent, understood as Conference.

But we lose some of the conveniences we get when we rely
on type inference. Most of all, we lose the ability to leverage
structural typing and work freely with objects that just
need to be compatible with types rather than explicitly be
of a certain shape.

229Chapter 4 Union and Intersection Types

For scenarios like that, we can fixate certain properties by
doing type casts. One way would be to cast the type of prop-
erty kind specifically to the value type:

const script19 = {
 title: 'ScriptConf',
 date: new Date('2019-10-25'),
 capacity: 300,
 rsvp: 289,
 description: 'The feelgood JS conference',
- kind: 'conference',
+ kind: 'conference' as 'conference',
 price: 129,
 location: 'Central Linz',
 talks: [{
 speaker: 'Vitaly Friedman',
 title: 'Designing with Privacy in Mind',
 abstract: '...'
 }]
};

That will work, but we lose some type safety as we could
also cast 'meetup' as 'conference'. Suddenly, we again
don’t know which types we are dealing with, and this is
something we want to avoid.

Much better is to tell TypeScript that we want to see this
value in its const context:

230 TypeScript in 50 Lessons

const script19 = {
 title: 'ScriptConf',
 date: new Date('2019-10-25'),
 capacity: 300,
 rsvp: 289,
 description: 'The feelgood JS conference',
- kind: 'conference',
+ kind: 'conference' as const,
 price: 129,
 location: 'Central Linz',
 talks: [{
 speaker: 'Vitaly Friedman',
 title: 'Designing with Privacy in mind',
 abstract: '...'
 }]
};

This works just like assigning a primitive value to a const
and fixate its value type.

What we get with as const.

231Chapter 4 Union and Intersection Types

You can apply const context events to objects, casting all
properties to their value types, effectively creating a value
type of an entire object. As a side effect, the whole object
becomes read-only.

Lesson 25: Dynamic Unions

Consider the following function. We get a list of tech events
and want to filter them by a specific event type:

type EventKind =
 'conference' | 'webinar' | 'meetup'

function filterByKind(
 list: TechEvent[],
 kind: EventKind
): TechEvent[] {
 return list.filter(el => el.kind === kind)
}

This function takes two arguments: list, the original
event list; and kind, the kind we want to filter by. We
return a new list of tech events. We make use of two types
to improve type safety. One is TechEvent, which we used a
lot in the last lessons.

The other one is EventKind, a union of all available value
types for the property kind. With that union in place,

232 TypeScript in 50 Lessons

we are allowed to only filter by the kinds of event listed
in that union:

// A list of tech events we get from a back end
declare const eventList: TechEvent[]

filterByKind(eventList, 'conference') // OK!
filterByKind(eventList, 'webinar') // OK!
filterByKind(eventList, 'meetup') // OK!

// 'concert' is not part of EventKind
filterByKind(eventList, 'concert') // Bang!

This is a tremendous improvement for developer experi-
ence, but has some pitfalls when our data is changing.

Lookup Types

What if we get another event type to the existing list of
event types, called Hackathon? A live, in-person coding event
that might cost something but has no talks.

Let’s define the new type:

type Hackathon = TechEventBase & {
 location: string,
 price?: number,
 kind: 'hackathon'
}

233Chapter 4 Union and Intersection Types

And add Hackathon to the union of TechEvents:

type TechEvent =
 Conference | Webinar | Meetup | Hackathon

Immediately, we get a disconnect between EventKind and
TechEvent. We can’t filter by 'hackathon' even though it
should be possible.

// This should be possible
filterByKind(eventList, 'hackathon') // Error

One way to change this would be to adapt EventKind every
time we change TechEvent. But this is a lot of effort, espe-
cially with growing or changing lists of data. What if, all of a
sudden, in-person conferences are not a thing anymore?

We want to keep the changes we make to our types as min-
imal as possible. For that, we need to create a connection
between EventKind and TechEvent.

You might have noticed that object types have a similar
structure to JavaScript objects. It turns out we have similar
operators on object types as well.

234 TypeScript in 50 Lessons

Just like we can access the property of an object by indexing it,
we can access the type of a property by using the right index:

declare const event: TechEvent
// Accessing the kind property via the index
// operator
console.log(event['kind'])

// Doing the same thing on a type level
type EventKind = TechEvent['kind']
// EventKind is now
// 'conference' | 'webinar' | 'meetup' | 'hackathon'

Since the union of TechEvent already combines all possible
values of property types into unions, we don’t need to define
EventKind on our own anymore. Types like this are called
index access types or lookup types.

With lookup types we create our own system of connect-
ed types that produce red squiggly lines everywhere we
didn’t expect them, acting as a safeguard for our own,
ever-changing work.

Mapped Types

Speaking of dynamically generated types, let’s look at a
function that groups events by their kind.

235Chapter 4 Union and Intersection Types

type GroupedEvents = {
 conference: TechEvent[],
 meetup: TechEvent[],
 webinar: TechEvent[],
 hackathon: TechEvent[]
}

function groupEvents(
 events: TechEvent[]
): GroupedEvents {
 const grouped = {
 conference: [],
 meetup: [],
 webinar: [],
 hackathon: []
 };
 events.forEach(el => {
 grouped[el.kind].push(el)
 })
 return grouped
}

The function creates a map, and then stores the original
list of tech events in a new order, based on the event kind.
Again, we face a similar problem as before. The type
GroupedEvents is manually maintained. We see that we
have four different keys based on the events that we work
with, and the moment the original TechEvent union chang-
es, we would have to maintain this type as well.

236 TypeScript in 50 Lessons

Thankfully, TypeScript has a tool for situations like this.
With TypeScript we can create object types by running over
a set of value types to generate property keys, and assigning
them a specific type.

In our case, we want the keys hackathon, webinar, meetup,
and conference to be generated automatically and mapped
to a TechEvent list by running over EventKind:

type GroupedEvents = {
 [Kind in EventKind]: TechEvent[]
}

We call this kind of type mapped type. Rather than hav-
ing clear property names, they use brackets to indicate a
placeholder for eventual property keys. In our example, the
property keys are generated by looping over the union type
EventKind. To visualize how this works, let’s expand the
mapped type ourselves in a couple of steps:

// 1. The original declaration
type GroupedEvents = {
 [Kind in EventKind]: TechEvent[]
}

// 2. Resolving the type alias.
// We suddenly get a connection to tech event
type GroupedEvents = {

237Chapter 4 Union and Intersection Types

 [Kind in TechEvent['kind']]: TechEvent[]
}

// 3. Resolving the union
type GroupedEvents = {
 [Kind in 'webinar' | 'conference'
 | 'meetup' | 'hackathon']: TechEvent[]
}

// 4. Extrapolating keys
type GroupedEvents = {
 webinar: TechEvent[],
 conference: TechEvent[],
 meetup: TechEvent[],
 hackathon: TechEvent[],
}

Just like we get from our original type! Mapped types are
not only a convenience that allows us to write a lot less and
get the same kind of tooling. We also create an elaborate
network of connected type information that allows us to
catch errors the very moment our data changes.

The moment we add another kind of event to our list of
tech events, EventKind gets an automatic update and we
get more information for filterByKind. We also know
that we have another entry in GroupedEvents, and the
function groupEvents won’t compile because the return

238 TypeScript in 50 Lessons

value lacks a key. And we get all these benefits at no extra
cost. We just have to be clear with our types and create the
necessary connections.

Remember, type maintenance is a potential source of errors.
Dynamically updating types helps.

Lesson 26:
Object Keys and Type Predicates

Our website not only lists events of different kinds – it also
allows users to maintain lists of events they’re interested in.
For users, events can have different states:

1.	 Users can be watching events they’re interested in.
They can keep up to date on speaker announcements
and more.

2.	 Users can be actively subscribed to events, meaning
that they either plan to attend or have already paid the
fee. For that, they responded to the event.

3.	 Users can have attended past events. They want to keep
track of video recordings, feedback, and slides.

4.	 Users can have signed out of events, meaning they
were either subscribed to an event but changed their
mind, or they just don’t want to see that event in their

239Chapter 4 Union and Intersection Types

lists anymore. Our application keeps track of those
events as well.

As always, we want to model our data first. As we don’t want
to change our existing types, but want a quick way to access
all four categories, we create another object that serves as a
map to each category. The type for this object looks like this:

type UserEvents = {
 watching: TechEvent[],
 rvsp: TechEvent[],
 attended: TechEvent[],
 signedout: TechEvent[],
}

Now for some operations on this object.

keyof

We want to give users the option to filter their events. First
by category: watching, rsvp, attended, and signedout;
second – and optionally – by the kind of event: conference,
meetup, webinar, or hackathon. The function we want to
create accepts three arguments:

1.	 The userEventList we want to filter.

2.	 The category we want to select. This matches one of
the keys of the userEventList object.

240 TypeScript in 50 Lessons

3.	 Optionally, a string of the set EventKind that allows us
to filter even further.

The first filter operation is quite simple. We want to access
one of the lists via the index access operator; for exam-
ple, userEventList['watching']. So for the type of the
category we create a union type that includes all keys of
userEventList.

type UserEventCategory =
 'watching' | 'rsvp' | 'attended' | 'signedoff'

function filterUserEvent(
 userEventList: UserEvents,
 category: UserEventCategory,
 filterKind?: EventKind
) {
 const filteredList = userEventList[category]
 if (filterKind) {
 return filteredList.filter(event =>
 event.kind === filterKind)
 }
 return filteredList
}

This works, but we face the same problems as we did in the
previous lesson: we’re maintaining types manually, which
is prone to errors and typos. Problems of that kind that are
hard to catch. Perhaps you didn’t notice I made a mistake
by using the value type signedoff in UserEventCategory,
which isn’t a key in UserEvents. That would be signedout.

241Chapter 4 Union and Intersection Types

We want to create types like this dynamically, and Type-
Script has an operator for that. With keyof we can get the
object keys of every type we define. And I mean every.
We can use keyof even with value types of the string
set and get all string functions. Or with an array and get
all array operators:

// 'speaker' | 'title' | 'abstract'
type TalkProperties = keyof Talk

// number | 'toString' | 'charAt' | ...
type StringKeys = keyof 'speaker'

// number | 'length' | 'pop' | 'push' | ...
type ArrayKeys = keyof []

The result is a union type of value types. We want the keys
of our UserEvents, so this is what we do:

function filterUserEvent(
 userEventList: UserEvents,
 category: keyof UserEvents,
 filterKind?: EventKind
) {
 const filteredList = userEventList[category]
 if (filterKind) {
 return filteredList.filter(event =>
 event.kind === filterKind)

242 TypeScript in 50 Lessons

 }
 return filteredList
}

The moment we update our UserEvent type, we also know
which keys we have to expect. So if we remove something,
instances where a removed key is used get red squiggly
lines. If we add another key, TypeScript will give us proper
autocomplete for it.

Type Predicates

Let’s assume that filterUserEvents is not only within
our application, but also available outside. Other developer
teams in our organisation can access the function, and they
might not use TypeScript to get their job done. For them,
we want to catch some possible errors up front, while still
retaining our type safety.

From both filter operations, the category filter is the prob-
lematic one, as it could access a key that is not available in
userEventList. To keep it type-safe for us, and more flexi-
ble to the outside, we accept that category is not a subset of
string, but the whole set of strings:

243Chapter 4 Union and Intersection Types

function filterUserEvent(
 list: UserEvents,
 category: string,
 filterKind?: EventKind
) {
 // ... tbd
}

But before we access the category, we want to check if this
is a valid key in our list. For that, we create a helper function
called isUserEventListCategory:

function isUserEventListCategory(
 list: UserEvents,
 category: string
) {
 return Object.keys(list).includes(category)
}

and apply this check to our function:

function filterUserEvent(
 list: UserEvents,
 category: string,
 filterKind?: EventKind
) {
 if(isUserEventListCategory(list, category)) {
 const filteredList = list[category]

244 TypeScript in 50 Lessons

 if (filterKind) {
 return filteredList.filter(event =>
 event.kind === filterKind)
 }
 return filteredList
 }
 return list
}

This is enough safety to not crash the program if we get
input that doesn’t work for us. But TypeScript (especially in
strict mode) is not happy with that. We lose all connections
to UserEvents, and category is still a string. On a type level,
how can we be sure that we access the right properties?

This is where type predicates come in. Type predicates are a
way to add more information to control flow analysis. We
can extend the possibilities of narrowing down by telling
TypeScript that if we do a certain check, we can be sure our
variables are of a certain type:

function isUserEventListCategory(
 list: UserEvents,
 category: string
): category is keyof UserEvents { // The type
predicate
 return Object.keys(list).includes(category)
}

245Chapter 4 Union and Intersection Types

Type predicates work with functions that return a Bool-
ean. If this function evaluates to true, we can be sure that
category is a key of UserEvents. This means that in the
true branch of the if statement, TypeScript knows the type
better. We narrowed down the set of string to a smaller set
keyof UserEvents.

Lesson 27:
Down at the Bottom: never
With all that widening and narrowing of sets, even down to
single values being a type, we have to ask ourselves: can we
get even narrower?

Yes, we can. There’s one type that’s at the very bottom of
the type hierarchy. One type that is an even smaller set
than a set with one value. The type without values. The
empty set: never.

never in Control Flow Analysis

never behaves pretty much like the anti-type of any. Where-
as any accepts all values and all operations on those values,
never doesn’t accept a single value at all. It’s impossible to
assign a value and, of course, there are no operations we

246 TypeScript in 50 Lessons

can do on a type that is never. So what does a type with no
values feel like when we are working with it?

We briefly touched on this already; it was hidden in plain
sight. Let’s go back to lesson 24 and remember what we did
when writing the getEventTeaser function, now with the
Hackathon type included:

function getEventTeaser(event: TechEvent) {
 switch(event.kind) {
 case 'conference':
 return `${event.title} (Conference), ` +
 `priced at ${event.price} USD'
 case 'meetup':
 return `${event.title} (Meetup), ` +
 `hosted at ${event.location}`
 case 'webinar':
 return `${event.title} (Webinar), ` +
 `available online at ${event.url}`
 case 'hackathon':
 return `${event.title} (Hackathon)`
 default:
 throw new Error('Not sure what to do with that!')
 }
}

This switch statement runs through all the value types
within the EventKind union type: 'conference' | 'meet-
up' | 'webinar' | 'hackathon'. With every case state-

247Chapter 4 Union and Intersection Types

ment in our switch, TypeScript knows to take one value
type away from this list. After we’ve checked for 'confer-
ence', it can’t be checked again later on.

Once this list is exhausted, we have no more values left in
our set. The list is empty. This is the default branch in our
switch statement.

But, if we checked for all values in our list, why would we
run into a default branch anyway? Wouldn’t that be errone-
ous behaviour?

Exactly! This is highly erroneous, as we indicate by throw-
ing a new error right away! Running into the default
branch can never happen. Never!

There it was, the never word. So this is what type never is all
about. It indicates the cases that aren’t supposed to happen,
telling us that we should be very careful as our variables
probably don’t contain the values we expect.

If you take the example above, enter event in the first line
of the default branch and hover over it, TypeScript will
show you exactly that.

248 TypeScript in 50 Lessons

The list is exhausted, event is never.

Any operation on event, other than being part of an error
thrown, will cause compiler errors. This is a situation that
should never happen at all!

Preparing for Dynamic Updates

Right now, our getEventTeaser function deals with all en-
tries from EventKind. In the case of a value coming in that
isn’t part of the union type, we throw an error. This is great,
but only works if we handle all possible cases.

249Chapter 4 Union and Intersection Types

What if we haven’t exhausted our entire list yet? Let’s re-
move 'hackathon' for now:

function getEventTeaser(event: TechEvent) {
 switch(event.kind) {
 case 'conference':
 return `${event.title} (Conference), ` +
 `priced at ${event.price} USD`
 case 'meetup':
 return `${event.title} (Meetup), `+
 `hosted at ${event.location}`
 case 'webinar':
 return `${event.title} (Webinar), ` +
 `available online at ${event.url}`
 default:
 throw new Error('Not sure what to do with
that!')
 }
}

In the default branch, event.kind is now 'hackathon', but
we aren’t dealing with it – we just throw an error. This is
somewhat right as we are not sure what to do with that, but it
would be a lot nicer if TypeScript alerted us that we forgot
something. We want to exhaust our entire list, after all.

For that, we want to make sure that at the end of a long
switch–case statement, or in else branches that shouldn’t
occur, the type of event is definitely never. Let’s create a

250 TypeScript in 50 Lessons

utility function that throws the error. But instead of sending
just a message, we also want to send the culprit that eventu-
ally caused that error. Clue: the type of this culprit is never.

function neverError(
 message: string,
 token: never // The culprit
) {
 return new Error(
 `${message}. ${token} should not exist`
)
}

We substitute the neverError function with the actual error
throwing in our switch–case statement:

function getEventTeaser(event: TechEvent) {
 switch(event.kind) {
 case 'conference':
 return `${event.title} (Conference), ` +
 `priced at ${event.price} USD`
 case 'meetup':
 return `${event.title} (Meetup), ` +
 `hosted at ${event.location}`
 case 'webinar':
 return '${event.title} (Webinar), ` +
 'available online at ${event.url}`
 default:
 throw neverError(
 'Not sure what to do with that',

251Chapter 4 Union and Intersection Types

 event
)
 }
}

And immediately TypeScript’s type checking powers kick in.
At this point, event could potentially be a hackathon. We’re
just not dealing with that. TypeScript gives us a red squig-
gly and tells us that we can’t pass some value to a function
that expects never.

After we add 'hackathon' to the list again, TypeScript will
compile again, and all our exhaustive checks are complete.

function getEventTeaser(event: TechEvent) {
 switch(event.kind) {
 case 'conference':
 return `${event.title} (Conference), ` +
 `priced at ${event.price} USD`
 case 'meetup':
 return `${event.title} (Meetup), ` +
 `hosted at ${event.location}`
 case 'webinar':
 return `${event.title} (Webinar), ` +
 `available online at ${event.url}`
 case 'hackathon':
 return `even that: ${event.title}`
 default:
 throw neverError(

252 TypeScript in 50 Lessons

 'Not sure what to do with that',
 event // No complaints
)
 }
}

With never we get a safeguard that can be used for situa-
tions that could occur, but should never occur. Especially
when dealing with sets of values that get wider and narrow-
er as we code our applications.

never is the bottom type of all other types, and will be a
handy tool in the next chapters.

Lesson 28: undefined and null

Before we close this chapter, we have to talk about two spe-
cial value types that you will catch sooner or later in your
applications: null and undefined.

Both null and undefined denote the absence of a value.
undefined tells us that a variable or property has been
declared, but no value has been assigned. null, on the
other hand, is an empty value that can be assigned to clear a
variable or property.

253Chapter 4 Union and Intersection Types

Both values are known as bottom values, values that have
no actual value.

Douglas Crockford once said25 that there is a lot of discussion
in the programming languages community about whether
a programming language should even have bottom values.
Nobody has the opinion that there need to be two of them.

undefined and null in the Type Space

undefined and null are somewhat special in TypeScript.
Both values are regularly part of each set of types.

The type number with
undefined and null.

This is because JavaScript behaves that way. The moment
we declare a variable, it is set to undefined. Programatically,
we can set variables to null or undefined. But this brings
along some problems.

25	 https://smashed.by/crockford

number

-1

...

NaN

1000000

120.3
6

undefined

null

254 TypeScript in 50 Lessons

Let’s look at this simple example:

// Let's define a number variable
let age: number

// I'm getting one year older!
age = age + 1

This is valid TypeScript code. We declare a number, and add
another number value to it. The problem is that this brings
us values we would not expect.

The result of this operation is NaN, because we are adding 1
to undefined. Technically, the result is again of type number,
just not what we expected!

It can get worse. Let’s go back to our tech event example. We
want to create an HTML representation of one of our events
and append it to a list of elements. We create a function that
runs over the common properties and returns a string:

function getTeaserHTML(event: TechEvent) {
 return `<h2>${event.title}</h2>
 <p>
 ${event.description}
 </p>`
}

255Chapter 4 Union and Intersection Types

We use this function to create a list element, which we can
add to our list of events:

function getTeaserListElement(event: TechEvent) {
 const content = getTeaserHTML(event)
 const element = document.createElement('li')
 element.classList.add('teaser-card')
 element.innerHTML = content
 return element
}

A bit rough, but it does the trick. Now, let’s add this element
to a list of existing elements:

function appendEventToList(event: TechEvent) {
 const list = document.querySelector('#event-list')
 const element = getTeaserListElement(event)
 list.append(element)
}

And here’s the problem: we have to be very sure that an
element with the ID event-list exists in our HTML. Oth-
erwise document.querySelector returns null, and append-
ing the list will break the application.

256 TypeScript in 50 Lessons

Strict null Checks

With null being part of all types, the code above is both val-
id and highly toxic. A simple change in our markup and the
whole application breaks. We need a way to make sure that
the result of document.querySelector is actually available
and not null.

Of course, we can do null checks or use the fancy “Elvis”
operator (?. also known as optional chaining26), but wouldn’t
it be great if TypeScript told us actively that we should do so?

There is a way. In your tsconfig.json we can activate the op-
tion strictNullChecks (which is part of strict mode). Once
we activate this option, all nullish values are excluded from
our types.

number

null

undefined

-1

...

NaN

1000000

120.3
6

The type number with strict null checks.

26	 https://smashed.by/optionalchaining

257Chapter 4 Union and Intersection Types

With null and undefined not being part of the actual type
set, this piece of code will cause an error during compile time:

let age: number
age = age + 1

age is not defined after all! But strictNullChecks does not
change how document.querySelector works. The result
can still be null. But the return type of document.query
Selector is Element | null, a union type with the nullish
value! And this makes TypeScript immediately throw a red
squiggly at us:

function appendEventToList(event: TechEvent) {
 const list = document.querySelector('#event-list')
 const element = getTeaserListElement(event)
 list.append(element)
}

list is probably null. How right TypeScript is. A quick null
check (the Elvis operator27 dancing in front of us) does the
trick and makes our code a lot safer:

function appendEventToList(event: TechEvent) {
 const list = document.querySelector('#event-list')
 const element = getTeaserListElement(event)

27	 https://smashed.by/elvis

258 TypeScript in 50 Lessons

 list?.append(element) // Optional chaining / Null
check
}

Typescript goes a little bit further even. With strict
NullChecks enabled, we not only have to check for nullish
values, we are also not allowed to assign undefined or null
to variables and properties. Both values are removed from
all types, so an assignment of that kind is forbidden.

There are situations where we need to work with either
undefined or null. To bring one (or both) values back
into the mix, we have to add them to a union; for exam-
ple, string | undefined. This makes adding nullish values
explicit, and we have to check for their existence.

type Talk = {
 title: string,
 speaker: string,
 abstract: string | undefined
}

Another way to add undefined is to make properties of an
object optional. Optional properties have to be checked for
as well, but without us maintaining too many types.

259Chapter 4 Union and Intersection Types

type Talk = {
 title: string,
 speaker: string,
 abstract?: string
}

In any case, like Douglas Crockford said, why should we
need two nullish values? If you must use one, stick with
one of them.

Recap
This chapter was all about type hierarchies, set theory, top
and bottom types, and nullish values that can break our
programs. Everything we learned in the scope of union and
intersection types is crucial to everything that’s coming
up. Once you learn how to move around in the type space,
TypeScript has so much to offer you.

1.	 We learned about union and intersection types, and
how we can model data that can take different shapes.

2.	 We also learned how union and intersection types
work within the type space. We also learned about
discriminating unions and value types.

260 TypeScript in 50 Lessons

3.	 We learned about const context, and found ways
to dynamically create other types through lookup
and mapped types.

4.	 We built our own type predicates as custom type guards.

5.	 The bottom type never is great for exhaustive checks
within switch or if–else statements.

6.	 Last, but not least, we dealt with null and undefined
and got pretty much rid of them.

One thing that is now second nature to us is widening and
narrowing types. We can go from the all-encompassing any
down to the type with no values, never. We can freely move
around in the type space for all types we know of. Now let’s
learn what to do with types whose shapes we don’t know.

261Chapter 4 Union and Intersection Types

Interlude: Tuple Types

We traversed the whole type spectrum of primitive types
and object types, but there’s one detail we’ve left out: arrays
and their subtypes. Consider this function signature:

declare function useToggleState(id: number):
 { state: boolean, updateState: () => void };

You might see something like this when you use a library
like React. It takes one parameter, a number. The name sug-
gests it’s an identifier, and it returns an object with the state
of our toggle button, and a function to update this state.

When we use this function, we want to use destructuring to
have easy access to its properties:

const { state, updateState } = useToggleState(1)

But what happens if we need to use more than one toggle
state at the same time?

const { state, updateState } = useToggleState(1)
// Those variables are already declared!
const { state, updateState } = useToggleState(2)

262 TypeScript in 50 Lessons

Object destructuring lets us go directly to the properties
of an object, declaring them as variables. We can use array
destructuring to go directly to the indices of an array, declar-
ing them as variables under an entirely new name:

const [first, updateFirst] = useToggleState(1)
const [second, updateSecond] = useToggleState(2)

Now we can use first, second and their state update meth-
ods freely in our code. Of course, we would require
useToggleState to return an array instead.

But how do we type this? We are dealing with two different
types. One is Boolean, the other one a function with no pa-
rameters and no return value. This is not your average array
with a technically endless amount of values of one type.

It’s a tuple. While an array is a list of values that can be of any
length, we know exactly how many values we get in a tuple.
Usually, we also know the type of each element in a tuple.

In TypeScript, we can define tuples. A tuple type for the
example above would be

declare function useToggleState(id: number):
 [boolean, () => void]

263Chapter 4 Union and Intersection Types

Note that we don’t define properties, just types. The order in
which the types appear is important.

Tuple types are subtypes of arrays, but they can’t be in-
ferred. If we use type inference directly on a tuple, we will
get the wider array type:

// tuple is '(string | number)[]'
let tuple = ['Stefan', 38]

As with any other value type, declaring a const context can
infer the types correctly:

// tuple is read-only [string, number]
let tuple = ['Stefan', 38] as const

But this makes tuple read-only too, so be aware. As with
any other subtype, if we declare a narrower type in
a function signature or in a type annotation, TypeScript
will check against the narrower type instead of the wider,
more general type:

function useToggleState(id: number):
 [boolean, () => void] {
 let state = false

264 TypeScript in 50 Lessons

 // ... Some magic

 // Type checks!
 return [false, () => { state = !state}]
}

Without the return type, TypeScript would assume that we
get an array of mixed Boolean and function values.

265Chapter 4 Union and Intersection Types

More Smashing Books

We pour our heart and soul into
crafting books that help make the
web better. We hope you’ll find
these other books we’ve published
useful as well—and thank you so
much for your kind support from
the very bottom of our hearts.

•	 Click! How to Encourage Clicks Without Shady Tricks by
Paul Boag

•	 The Ethical Design Handbook by Trine Falbe,
Martin Michael Frederiksen and Kim Andersen

•	 Inclusive Components by Heydon Pickering

•	 Art Direction for the Web by Andy Clarke

•	 Form Design Patterns by Adam Silver

•	 Design Systems by Alla Kholmatova

•	 Smashing Book 6: New Frontiers in Web Design
by Laura Elizabeth, Marcy Sutton, Rachel Andrew,
Mike Riethmuller, Lyza Gardner, Yoav Weiss,
Adrian Zumbrunnen, Greg Nudelman,
Ada Rose Cannon, & Vitaly Friedman

The world is a miracle. So are you.

Thanks for being smashing.

This is a gentle and timeless journey through the

tenets of TypeScript. If you’re a JavaScript programmer

looking for a clear primer text to help you become

immediately productive with TypeScript, this is the

book you’re looking for. It’s filled with practical

examples and clear technical explanations.”

—Natalie MarlenyNatalie Marleny, Application Engineer

Stefan walks you through everything from basic types

to advanced concepts like the infer keyword in a clear

and easy to understand way. The book is packed with

many real-world examples and great tips, transforming

you into a TypeScript expert by the end of it.

Highly recommended read!”

—Marvin HagemeisterMarvin Hagemeister, Creator of Preact-Devtools

Stefan Baumgartner is a software architect

based in Austria. He has published online

since the late 1990s, writing for Manning,

Smashing Magazine, and A List Apart.

He organizes ScriptConf, TSConf:EU, and

DevOne in Linz, and co-hosts the German-

language Working Draft podcast.

9 783945 749906

“

“

